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Energy localization in a nonlinear discrete system
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We show that, in the weak amplitude and slow time limits, the discrete equations describing the dynamics
of a one-dimensional lattice can be reduced to a modified Ablowitz-Ladik equation. The stability of a con-
tinuous wave solution is then investigated without and with periodic boundary conditions. Energy localization
via modulational instability is predicted. Our numerical simulations, performed on a cyclic system of six
oscillators, agree with our theoretical predictiof81063-651X96)08105-6

PACS numbgs): 03.20:+i, 63.20.Pw, 03.40.Kf

[. INTRODUCTION modes are unstable, leading to energy localization inside the
system. The validity of this study is finally checked by nu-
Localization phenomena are of great physical importancénerical simulations on the dynamics of a model correspond-
as well as of applicability in various domains of science,ing to a cyclic system of six identical oscillators.
such as molecular physics, polarons in ionic crystals or pro-
ton solitons[1], etc. Although vibrational localization in
linear lattices with defects has been well understood for a Il. THEORETICAL STUDY

Iong tim_e [2], _the study of localization in nonlinear lattices £ the sake of clarity, we first consider the dynamics of
without impurities was developed only recenfBl. The so- 5y infinite chain made of oscillators of massseparated by
called intrinsic nonlinear localized excitations have been, |5iice spacing.. The Hamiltonian of our model is

since then the subject of remarkable intefdst11]. Follow-
ing the pioneering work of Fermi, Pasta, and UIgi#], who

demonstrated that a system of coupled nonlinear oscillators

: oot : : Mo} m [ du,)?
does not result in energy equipartition, most of the investi- H=S 0 [u]2+3 — “Hn +3V(Uys 1 —Up)
gations have been devoted to simple one-dimensional lat- 2 n 2\ dt n+l Hnl
tices, with one degree of freedom per unit cell and nearest (2.7

neighbor interactiorf13,14. Other studies were developed
by considering an external substrate potential or systems

with a small number of particles separated by a heavy on&/N€ré un(t) denotes the displacement of oscillator Ac-
[15,16. cording to(2.1), each oscillator is submitted to a harmonic

In fact, in nonlinear physical systems, the interplay pe-On-site potential with Chqracteristic frequenﬂy, and is an-
tween nonlinear and dispersion effects can lead to a Sehr_llarmonlcally coupled to its nearest neighbors, via the poten-
induced modulation of the steady state. This Benjamin-Feif'al V(rn),
or modulational instability(MI), first studied in hydrody-
namics[17], is also well known in nonlinear opticsl8],

electrical transmission linegl9], etc. MI appears in con- L S S St S B L
tinuous models, but also in discrete systems, which are mod- C y
eled by a set of coupled ordinary differential equations, such 0.8

as integrable or nonintegrable discrete nonlinear Stihger

equations(IN-DNLS) [20-23. For these models, Ml was

proved to be responsible for energy localization mechanisms 0.6

[24].

In this paper we first discuss, in the weak amplitude and 0.4

slow time limits, the existence of MI in an infinite one-

dimensional lattice model with a specific nonlinear coupling

potential. Although this potential can be regarded only as a 0.2

good approximation of the Morse one, it allows one to re-

duce the theoretical study to a modified Ablowitz-Ladik o L

equation. This equation is known to be analytically tractable -1 0 1

for Ml investigation [22]. Moreover, we focus on lattices r,

with periodic boundary conditions, that are equivalent to cy-

clic systems. We show that, above an energy threshold, some F|G. 1. Dependence of the coupling potentr,) according
to Eq.(2.2) (solid line) and of the Morse potentigtashed lingvs
the relative dimensionless displacemept The parameters\, B,

*Electronic address: bilbault@satie.u-bourgogne.fr anda are chosen to be equal to unity.
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A d%u, Ups1—Up
= — + — . . —_n__ 2 + 2
V(r,)=Ar,—BLn| 1 B rn) (2.2 ae wgU,+Ug T+ (U, —u/a
Here,r,(t)=(u,,.1—Uu,)/ais the relative dimensionless dis- Up~Up—1 23
placement of oscillators +1 andn, while A andB are posi- 1+ y(u,—u,_q)/al’ 23

tive parameters. Note that for,=0, the oscillatorsn and

n+1 are separated by the equilibrium distarceAs shown whereu2=A%/mB& is the coupling constant ang=A/B is

in Fig. 1, whereA andB have been taken equal to unity, for 5 nonjinear dimensionless coefficient. Consequently, we get
|r,|<0.5, the potential2.2) (solid line) is a good approxi- for the relative motion of the oscillators
mation of the Morse potential

9B 2Ar1, 2 dzl’n:_w2r 2 M+1 n -1 5 Mn
U(rn):? ex 3B -1 dt2 0'n 0 1+’yrn+1 1+'yrn_1 1+y|’n )
(2.9
(dashed ling From (2.1) and (2.2), the absolute motion of
oscillatorn is given by the equation Equation(2.4) is then transformed into

2 3
[+ y(rnertrnoatr)+ v (Tnsalnoatralnoatralne ) + ¥ realnlfnoql

2
n
(—+wgrn

dt?
2
=Uglrr1rn-1=2M+¥(2rnpafn-1= el =rafn-1) 1 (2.9
|
Linear oscillations of frequencyw and wave numbek are 0= w3—Uu?
described by the dispersion relation Pnr1®n-1T Phe1Pn-1t 202 [en(@hsrten1)
2 2
* W — wq 2
ka ten(eniaten-1)]+ — 7 en"=0. (2.9
w2=w3+4u(2) sir? > (2.6 0

Next, for the terms in expfiwt), after having used2.8),

which shows that the linear spectrum has a gapand is we get

limited by the cutoff frequencyy,a=(wi+4u?)2 Here,w,

is assumed to be large with respect to the coupling constant

Ug that is, the discreteness effects are strong. It is important  2iw
to stress that the specific choice 9{r,) given by (2.2),

den

dT

2 2 2
+Ug(@ns1ten—1)+ ‘Pn(wz_ wg—2Ug)

completed by the assumptiog<w,, allows one to make the (w2— wg)z w2— w(Z)
analytical calculations further than a Taylor expansion of a — v onl%e0n — + y? p
standard Hamiltonian, for example. The present study can Yo 2Ug
also model a physical system as an atomic chain lying on a 2, 2 2 2
strong harmonic substrate, while the potentiat ) weakly X[(Sup 0o @)l enl"(¢ns 1t en-1)
couples each atom to its neighbdfs). +(Bui+ wi— wd) Q2(k, 1+ o ))]
As a first consequence, the assumptigrw, involves o 2 2w
that, for any wave with frequency in the spectrum width + ¥ (@0~ 0g)en n+19n-1=0. 2.9

[wg,wmax, @ll harmonics lie above,,, and can therefore be

neglected in a first approximatidi9]. Restricting moreover Setting T=(2w/u3)7, and ¢,=y.exp{[(0’*—w}
our study to weak amplitude and slow temporal variations of- 2y 2)/u2] 7}, we finally get a modified Ablowitz-Ladik
the wave envelope, and settifig= €’t, wheree is a small equation,

parameter, we look for a solution in the form

rn(t):EQDn(T)eX[i—iwt)'i‘EQD:(T)EXFZ(iwt). 2.7 | dr +‘//n+1+‘»[/n—1+/1/|'r//n| (’7[’n+l+‘//n—l)+2V|'vz’n| n
+ W YRt YD) T 20 Y a1 =0, (2.10

Inserting(2.7) in (2.5, and restricting ourselves to the third
order inge, yields first the dc terms: with the nonlinear coefficients
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, (02— wd)(5U2+ w2 — w?) —2_¢(2,[y+ y’+_(M+,LL’)cos(l<a)]. The modulationgl instability_
mn=7y U2 , being |n_d|cat|ve[22] of the occurrence of Ioc_allzed stat_e_s in
0 the chain, we now turn our attention to the linear stability of
these plane wave solutions by considering small real ampli-

o, (02— 03)(3Ud+ wi— »?) tude and phase perturbatiorts, andc,, respectively, with
m=Y 2u8 , frequency() and wave numbeK. Thus we considey,(7) of
the f
(212 e form
) (wz—a)(z))2 L (wz—w(z))
VESY T E and v'=vy T Un(T)=(ho+by+ic,)expi[kna—Awr+ 6p).
0 0

(2.12
Next, looking for uniform plane wave solutions (.10,

that is, ¢ (D=ypexp[kna—Awr+ 6], we obtain the Inserting(2.12 in (2.10 yields a set of two linear equations

nonlinear dispersion relation Aw=-2 coska) in b,, andc, whose determinant must be zero, that is,

4 cogka) il u cog(Ka/2)+ u sirf(Ka/2)]
—8v' Y sirf(Ka/2)— 4 cogka)sir’(Ka/2)
=0. (213

Q-2 sinka)sin(Ka)[ 1+ (u— ') 3]

4 cogka) Y[ (u+u')cod(Kal2)+v' cogKa)]

. . . f 2
+4vyi—4 cogka)sirt(Ka/2) Q=2 sinkajsinKa)[1+ (nt+u') ¢l

Solving this condition with respect to the frequerfey we get imaginary solutions, when

sir(ka)sir?(Ka) u' 25+ 4{cog ka) [ u cof(Ka/2)+ u'sirP(Kal2)]—2v' 43 sirf(Kal2) — cog ka)sir?(Ka/2)}
x {cog ka) i (u+ p')cof(Kal2)+ v’ codKa)]+ vys—cogka)sir’(Ka/2)}<O. (2.14

Therefore, substituting, u’, v, andv' in (2.14) by means of The above results were derived for an infinite lattice, but
(2.6) and(2.11), we find that Ml occurs when the amplitude can be straightforwardly extended to lattices with periodic
i exceeds a thresholgy; and when the wave numbeks  boundary conditionst,(t)=r,, (1), that corresponds to a
andK lie in definite domaingMI regions, as represented in  cyclic chain. This implies that both main wave numkeand

Flg 2, with the relevant amplitude threshold. Note that Weperturbation wave numbé¢ must be of the form ﬁﬂ-/Na,
have truncated the amplitude threshold axis at 0.5 becausghere the integep is 0, =1, +2,..., =(N—2)/2, or +N/2, if

above this value|r,|<1 is not satisfied, and the potential \ is even, and 0+1, +2,..., or =(N—1)/2 if N is odd.

(2.2 is no longer realistic. Replacingk andK by these expressions {@.14) or in Fig. 2
o Flglure 2 shows thatIfOk:W/Z%Ia”d fork 6;]b°u“7|/3a- H allows us to determine if the cyclic chain is modulationally
the plane waves are always stable. Everywhere else, Whelyyp e o ynstable for each of the possible modes, and in

150<r Z:ﬁ:fl wea%invsh\ggvtehse a&:ﬁq;Ti?l?égag?(gzg)ésugsi?]?leir?;gthe latter case, to calculate the theoretical amplitude thresh-
This threshold increases very fast wih such that no M old required for MI. For example, if the chain is composed of

: AP o N=6 oscillators(see Table)l, no Ml is predicted fok=0 or
finally occurs ifK is sufficiently large. Let us note here that
the pyresence oft' #0 and V’a&g in ?2.1() drastically modi- k== 77/_3a._ Note that the mode=0 (k=0)_corresponc_is to
fies the MI conditions, compared to the IN-DNLS c48€] the oscillations of the center_of mass and is ne_cessarlly stable
where «'=0 and ' =0. In fact, MI windows exist here for because the external potential(@ 1) is harmonic. Thus we
k<m/2a. As a comparison, in electrical transmission net-Will not consider it in the foIIovying. On the othe_r hand, Ml is
works [25], where the theoretical study yields an IN-DNLS eXp?CteP' yvhe|H<|>7-r/2a. In this case, the amplltude thresh-
equation, plane waves with< m/2a were found to be stable. ©!d is minimal forkK=*m/3a. Namely, for this value oK,

Let us consider now the cade>m/2a in Fig. 2. The the MI threshold isyy,=0.144 fork= = 27/3a and is 0.167

waves are always stable in a small region riearr/2a and for k= w/a_. Note that with these amplitudes, the potential
for largeK. Elsewhere, Ml occurs with an amplitude thresh- (22 remains very close to the Morse potentisée Fig. 1
old which increases with the perturbation wave numker

Specifically, settingk=/a in (2.14), that is, when the

neighboring particles oscillate out of phase, the threshold can IIl. NUMERICAL STUDY

be explicitly calculated with respect t: In order to check the validity of our analytical approach
and to determine the evolution of plane wave oscillations and
212 _ tarf(Ka/2) 2.15 energy localization of the cyclic system under small pertur-
VYo" 10+ 6 tarf(Kal2) '

bations, we have performed numerical simulations with the
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FIG. 2. MI regions numerically depicted vs
ak and aK, a being the lattice spacinds the
carrier wave number, an& the perturbation
wave number. The Ml amplitude threshold is rep-
resented vertically when it is smaller than Odb-
mensionless unifsOtherwise, the carrier wave is
always modulationally stable.

Threshold

set of differential equation&.3), describing the system evo- For k== 7/3a, no instability is detected for all the six
lution before any approximation. We have used a fourth orpossible values oK. For instance, Fig. @ shows the time
der Runge-Kutta method, with a time step chosen to preservevolution of the spatial Fourier componer§g, whenk=K

the Hamiltonian to an accuracy better than 1@ver a com- =/3a and yy=¢,=0.35. The carrier wavep==+1) is
plete numerical experiment. The parameters of the chain argtable over about 800 periods, and the oscillations of the
a=1m=1A=1B=1, thatis,u3=y=1. The lower gap fre- sidebandp==*2) cannot be detected. Note that the last spa-
quency corresponds ©3=100, so that the conditiom>u, tial Fourier componentp=3) remains negligible, as sup-

is satisfied. posed in the preceding section.
The initial condition is a plane wave, whose amplitude is For k=*27/3a, Ml develops for wave numbek = 7/
slightly modulated, 3a, when the amplitude), exceeds of 0.188see Table)l

We also obtain Ml folkk= 7r/a, andK = 7/3a, with a thresh-
o old value at 0.210. This agrees rather well with theoretical

Un(t=0)=2¢o[ 1+0.01 cogkna)jcogkna). (3.1 predictions of Table I, in spite of the approximations made in
Sec. Il. We have represented in FigbBthe spatial Fourier
componentsS; versus the time fok=w/a, K=x/3a, and
#,=0.26, that is,¢,=0.13. The sidebandk=K(p=*2)
quickly increase and become rather large with respect to the
carrier level(p=3). Note that the bands=* 2K (that is,p=

Here, the amplitude parametey of the absolute displace-
ment is straightforwardly related tf, involved in(2.12 by

ho=2¢g sin TR (32 +1), not considered in the theoretical section, also increase
versus time, but seem to play a negligible role. All these

lators, with periodic boundary conditions, that is, the wavetime units, not represented in this papehese oscillations
numbersk and K are both 0,+x/3a, =2#/3a, or +m/a, Present a recurrence behavior. The averaged period of this
while w is deduced fron(2.6). recurrence is about 80 time units.
For the previous numerical experimdsee Fig. 8)], we

TABLE I. Comparison between the theoretical predictions andh@ve also represented in Figsaand 4b), for each particle,
numerical results, concerning the Ml occurrence for a plane wavéhe evolution versus time of its energy, defined fr@hi) by
with amplitudeyy and wave numbek, slightly modulated at wave
numberK = 77/3a, propagating in a chain with periodic boundary 2

" N Mo m (du,\? 1
conditions(N=6). As specified in the texa=m=A=B=uj=1, Ho=—C7uP+—— +Z7V(Uoss—u
while w§=100. =g [l ) g Vet
Carrier wave number k==*=/3a k==*27/3a k=+m/a +V(Uup—up-1)], 3.3
Theoretical predictions stable unstable unstable ) ) ) o
Yo=0.144  yp,=0.167  Where the potentiaV/(r) is uniformly distributed between
Numerical results stable unstable unstable  Particlesn andn+1. Each energyH, starts at abouti/6.

[see Fig. 83)] ¢, =0.183 ¢, =0.210 Due to Ml and since the total energ of the cyclic chain is
[see Fig. )] conserved, 60% of the energy is confined in the vibration of
the sixth particle at=120 units, 21% in the vibration of the
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FIG. 3. Time evolution of the Fourier componefits=+1, +2, FIG. 4. Time evolution of the relative energy of particles 1-3,

and 3, with a logarithmic scale, for a wave with amplitude showing spatial localization, the parameters being fixed as for Fig.
#,=0.35 and wave number= 7/3a slightly modulated with wave 3(b). (b) The same for particles 4—6.

numberK = 7r/3a, and propagating in a chain with periodic bound- . _ . .
ary condiions (N=6). As specified in the text, cially the modek= 7r/a where the particles oscillate out of

a=m=A=B=u2=1, while ©3=100. (b) The same, but for pr;ase,hare fOl:'nd to be unstable un.derhsmﬁlllpertﬁrbgtmn,
Yo=0.26,k=m/a, andK = m/3a. when the amp itude exceeds a certain thres _od. The insta-
bilities are related to energy localization, that is, the energy

first and fifth ones, while the three others have almost ngoncentrates then periodically in the vibrations of each par-
energy. Next, the energy is located only in particles 1 and jgicle. This _predlcyon is numerically checked fpr a simple
(at t=310 unity, and later, in particles 3 and @t t=390 model of six particles, and the numerlcal amp'lltude thresh—
units), and so on. At=460 units, the energy localizes again ©lds for Ml agree rather well with the theoretical ones, in
in particle 6, that is, the chain presents a recurrence behaviotPite of the approximations. For these amplitude values, the
Carrying on the numerical simulation for 10 000 time units, considered potential is very close to the Morse potential,
we get an average value for the recurrence period of abouyhich is often used in different physical domains. Our re-
160 time units, twice the recurrence time observed for théults suggest that the present analysis could be applied to
spatial Fourier sidebands=K. Thus each oscillator takes Physical systems of coupled nonlinear oscillators, with a
alternatively most of the total energy every 160 time units father small number of particles, and also to cyclic mol-
i.e., every 260 carrier oscillations, while energy returns to £cules, such as benzengHg or silane SiH, where some
uniform distribution twice during this time. This recurrence Signatures of energy localization in specific bonds have been
time depends not only okandK, but also on the difference observeg[26]. In such'molecules., the_ substrate _potentlal may
between the amplitude and the amplitude threshold, as su§€ considered, to a first approximation, as an interaction be-
gested by the theoretical study of Sec. II. ween the heayy part of the_ system and the hydrogen atoms,
In conclusion, we have shown that the physics of a oneWhile the nonlinear potentiaV/(r) couples each hydrogen
dimensional lattice, with a specific coupling nonlinear poten-2tom with its neighbors.
tial, can be described, in the weak amplitude and slow time
limits, by a modified Ablowitz-Ladik equation. We have ACKNOWLEDGMENTS
next considered a lattice with periodic boundary conditions,
that corresponds to a cyclic system. The stability of the cw The authors are grateful to M. Remoissenet and E. Coquet
modes has been investigated. Some of these modes, espé-Burgundy University for helpful discussions.
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