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We show that, in the weak amplitude and slow time limits, the discrete equations describing the dynamics
of a one-dimensional lattice can be reduced to a modified Ablowitz-Ladik equation. The stability of a con-
tinuous wave solution is then investigated without and with periodic boundary conditions. Energy localization
via modulational instability is predicted. Our numerical simulations, performed on a cyclic system of six
oscillators, agree with our theoretical predictions.@S1063-651X~96!08105-6#

PACS number~s!: 03.20.1i, 63.20.Pw, 03.40.Kf

I. INTRODUCTION

Localization phenomena are of great physical importance
as well as of applicability in various domains of science,
such as molecular physics, polarons in ionic crystals or pro-
ton solitons@1#, etc. Although vibrational localization in
linear lattices with defects has been well understood for a
long time @2#, the study of localization in nonlinear lattices
without impurities was developed only recently@3#. The so-
called intrinsic nonlinear localized excitations have been
since then the subject of remarkable interest@4–11#. Follow-
ing the pioneering work of Fermi, Pasta, and Ulam@12#, who
demonstrated that a system of coupled nonlinear oscillators
does not result in energy equipartition, most of the investi-
gations have been devoted to simple one-dimensional lat-
tices, with one degree of freedom per unit cell and nearest
neighbor interaction@13,14#. Other studies were developed
by considering an external substrate potential or systems
with a small number of particles separated by a heavy one
@15,16#.

In fact, in nonlinear physical systems, the interplay be-
tween nonlinear and dispersion effects can lead to a self-
induced modulation of the steady state. This Benjamin-Feir
or modulational instability~MI !, first studied in hydrody-
namics @17#, is also well known in nonlinear optics@18#,
electrical transmission lines@19#, etc. MI appears in con-
tinuous models, but also in discrete systems, which are mod-
eled by a set of coupled ordinary differential equations, such
as integrable or nonintegrable discrete nonlinear Schro¨dinger
equations~IN-DNLS! @20–23#. For these models, MI was
proved to be responsible for energy localization mechanisms
@24#.

In this paper we first discuss, in the weak amplitude and
slow time limits, the existence of MI in an infinite one-
dimensional lattice model with a specific nonlinear coupling
potential. Although this potential can be regarded only as a
good approximation of the Morse one, it allows one to re-
duce the theoretical study to a modified Ablowitz-Ladik
equation. This equation is known to be analytically tractable
for MI investigation @22#. Moreover, we focus on lattices
with periodic boundary conditions, that are equivalent to cy-
clic systems. We show that, above an energy threshold, some

modes are unstable, leading to energy localization inside the
system. The validity of this study is finally checked by nu-
merical simulations on the dynamics of a model correspond-
ing to a cyclic system of six identical oscillators.

II. THEORETICAL STUDY

For the sake of clarity, we first consider the dynamics of
an infinite chain made of oscillators of massm separated by
a lattice spacinga. The Hamiltonian of our model is

H5S
mv0

2

2
@un#

21S
m

2 S dundt D 21SV~un112un!,

~2.1!

whereun(t) denotes the displacement of oscillatorn. Ac-
cording to ~2.1!, each oscillator is submitted to a harmonic
on-site potential with characteristic frequencyv0, and is an-
harmonically coupled to its nearest neighbors, via the poten-
tial V(r n),
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FIG. 1. Dependence of the coupling potentialV(r n) according
to Eq. ~2.2! ~solid line! and of the Morse potential~dashed line! vs
the relative dimensionless displacementr n . The parametersA, B,
anda are chosen to be equal to unity.
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V~r n!5Arn2BLnS 11
A

B
r nD . ~2.2!

Here,r n(t)5(un112un)/a is the relative dimensionless dis-
placement of oscillatorsn11 andn, whileA andB are posi-
tive parameters. Note that forr n50, the oscillatorsn and
n11 are separated by the equilibrium distancea. As shown
in Fig. 1, whereA andB have been taken equal to unity, for
ur nu,0.5, the potential~2.2! ~solid line! is a good approxi-
mation of the Morse potential

U~r n!5
9B

8 FexpS 2Arn3B D21G2
~dashed line!. From ~2.1! and ~2.2!, the absolute motion of
oscillatorn is given by the equation

d2un
dt2

52v0
2un1u0

2S un112un
11g~un112un!/a

2
un2un21

11g~un2un21!/a
D , ~2.3!

whereu 0
25A2/mBa2 is the coupling constant andg5A/B is

a nonlinear dimensionless coefficient. Consequently, we get
for the relative motion of the oscillators

d2r n
dt2

52v0
2r n1u0

2S r n11

11gr n11
1

r n21

11gr n21
22

r n
11gr n

D .
~2.4!

Equation~2.4! is then transformed into

S d2r ndt2
1v0

2r nD @11g~r n111r n211r n!1g2~r n11r n211r nr n211r nr n11!1g3r n11r nr n21#

5u0
2@r n11r n2122r n1g~2r n11r n212r n11r n2r nr n21!#. ~2.5!

Linear oscillations of frequencyv and wave numberk are
described by the dispersion relation

v25v0
214u0

2 sin2
ka

2
. ~2.6!

which shows that the linear spectrum has a gapv0 and is
limited by the cutoff frequencyvmax5~v0

214u0
2!1/2. Here,v0

is assumed to be large with respect to the coupling constant
u0 that is, the discreteness effects are strong. It is important
to stress that the specific choice ofV(r n) given by ~2.2!,
completed by the assumptionu0!v0, allows one to make the
analytical calculations further than a Taylor expansion of a
standard Hamiltonian, for example. The present study can
also model a physical system as an atomic chain lying on a
strong harmonic substrate, while the potentialV(r n) weakly
couples each atom to its neighbors@15#.

As a first consequence, the assumptionu0!v0 involves
that, for any wave with frequencyv in the spectrum width
@v0,vmax#, all harmonics lie abovevmax and can therefore be
neglected in a first approximation@19#. Restricting moreover
our study to weak amplitude and slow temporal variations of
the wave envelope, and settingT5e2t, wheree is a small
parameter, we look for a solution in the form

r n~ t !5ewn~T!exp~2 ivt !1ewn* ~T!exp~ ivt !. ~2.7!

Inserting~2.7! in ~2.5!, and restricting ourselves to the third
order ine, yields first the dc terms:

wn11wn21* 1wn11* wn211
v22v0

22u0
2

2u0
2 @wn~wn11* 1wn21* !

1wn* ~wn111wn21!#1
v22v0

2

u0
2 uwnu250. ~2.8!

Next, for the terms in exp(2 ivt), after having used~2.8!,
we get

2iv
dwn

dT
1u0

2~wn111wn21!1wn~v22v0
222u0

2!

2g2uwnu2wn

~v22v0
2!2

u0
2 1g2

v22v0
2

2u0
2

3@~5u0
21v0

22v2!uwnu2~wn111wn21!

1~3u0
21v0

22v2!wn
2~wn11* 1wn21* !#

1g2~v22v0
2!wn*wn11wn2150. ~2.9!

Setting T5(2v/u 0
2)t, and wn5cnexpi $[(v

22v 0
2

22u 0
2)/u 0

2] t%, we finally get a modified Ablowitz-Ladik
equation,

i
dcn

dt
1cn111cn211mucnu2~cn111cn21!12nucnu2cn

1m8cn
2~cn11* 1cn21* !12n8cn*cn11cn2150. ~2.10!

with the nonlinear coefficients
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m5g2
~v22v0

2!~5u0
21v0

22v2!

2u0
4 ,

m85g2
~v22v0

2!~3u0
21v0

22v2!

2u0
4 ,

~2.11!

n52g2
~v22v0

2!2

2u0
4 , and n85g2

~v22v0
2!

2u0
2 .

Next, looking for uniform plane wave solutions of~2.10!,
that is, cn~t!5c0expi [kna2Dvt1u0], we obtain the
nonlinear dispersion relation Dv522 cos(ka)

22c0
2@n1n81~m1m8!cos(ka)#. The modulational instability

being indicative@22# of the occurrence of localized states in
the chain, we now turn our attention to the linear stability of
these plane wave solutions by considering small real ampli-
tude and phase perturbations,bn and cn , respectively, with
frequencyV and wave numberK. Thus we considercn~t! of
the form

cn~t!5~c01bn1 icn!exp i @kna2Dvt1u0#.
~2.12!

Inserting~2.12! in ~2.10! yields a set of two linear equations
in bn andcn whose determinant must be zero, that is,

U V22 sin~ka!sin~Ka!@11~m2m8!c0
2#

4 cos~ka!c0
2@m cos2~Ka/2!1m sin2~Ka/2!#

28n8c0
2 sin2~Ka/2!24 cos~ka!sin2~Ka/2!

4 cos~ka!c0
2@~m1m8!cos2~Ka/2!1n8 cos~Ka!#

14nc0
224 cos~ka!sin2~Ka/2!

V22 sin~ka!sin~Ka!@11~m1m8!c0
2#
U50. ~2.13!

Solving this condition with respect to the frequencyV, we get imaginary solutions, when

sin2~ka!sin2~Ka!m82c0
414$cos~ka!c0

2@m cos2~Ka/2!1m8sin2~Ka/2!#22n8c0
2 sin2~Ka/2!2cos~ka!sin2~Ka/2!%

3$cos~ka!c0
2@~m1m8!cos2~Ka/2!1n8 cos~Ka!#1nc0

22cos~ka!sin2~Ka/2!%,0. ~2.14!

Therefore, substitutingm, m8, n, andn8 in ~2.14! by means of
~2.6! and~2.11!, we find that MI occurs when the amplitude
c0 exceeds a thresholdc0t and when the wave numbersk
andK lie in definite domains~MI regions!, as represented in
Fig. 2, with the relevant amplitude threshold. Note that we
have truncated the amplitude threshold axis at 0.5 because,
above this value,ur nu,1 is not satisfied, and the potential
~2.2! is no longer realistic.

Figure 2 shows that fork5p/2a and for k aboutp/3a,
the plane waves are always stable. Everywhere else, when
k,p/2a, the plane waves are modulationally unstable only
for small K and when the amplitude exceeds a threshold.
This threshold increases very fast withK, such that no MI
finally occurs ifK is sufficiently large. Let us note here that
the presence ofm8Þ0 andn8Þ0 in ~2.10! drastically modi-
fies the MI conditions, compared to the IN-DNLS case@22#
wherem850 andn850. In fact, MI windows exist here for
k,p/2a. As a comparison, in electrical transmission net-
works @25#, where the theoretical study yields an IN-DNLS
equation, plane waves withk,p/2a were found to be stable.

Let us consider now the casek.p/2a in Fig. 2. The
waves are always stable in a small region neark5p/2a and
for largeK. Elsewhere, MI occurs with an amplitude thresh-
old which increases with the perturbation wave numberK.
Specifically, settingk5p/a in ~2.14!, that is, when the
neighboring particles oscillate out of phase, the threshold can
be explicitly calculated with respect toK:

g2c0t
2 5

tan2~Ka/2!

1016 tan2~Ka/2!
~2.15!

The above results were derived for an infinite lattice, but
can be straightforwardly extended to lattices with periodic
boundary conditions,r n(t)5r n1N(t), that corresponds to a
cyclic chain. This implies that both main wave numberk and
perturbation wave numberK must be of the form 2pp/Na,
where the integerp is 0,61, 62,...,6~N22!/2, or1N/2, if
N is even, and 0,61, 62,..., or 6~N21!/2 if N is odd.
Replacingk andK by these expressions in~2.14! or in Fig. 2
allows us to determine if the cyclic chain is modulationally
stable or unstable for each of theN possible modes, and in
the latter case, to calculate the theoretical amplitude thresh-
old required for MI. For example, if the chain is composed of
N56 oscillators~see Table I!, no MI is predicted fork50 or
k56p/3a. Note that the modep50 ~k50! corresponds to
the oscillations of the center of mass and is necessarily stable
because the external potential in~2.1! is harmonic. Thus we
will not consider it in the following. On the other hand, MI is
expected whenuku.p/2a. In this case, the amplitude thresh-
old is minimal forK56p/3a. Namely, for this value ofK,
the MI threshold isgc0t50.144 fork562p/3a and is 0.167
for k5p/a. Note that with these amplitudes, the potential
~2.2! remains very close to the Morse potential~see Fig. 1!.

III. NUMERICAL STUDY

In order to check the validity of our analytical approach
and to determine the evolution of plane wave oscillations and
energy localization of the cyclic system under small pertur-
bations, we have performed numerical simulations with the

53 5405ENERGY LOCALIZATION IN A NONLINEAR DISCRETE SYSTEM



set of differential equations~2.3!, describing the system evo-
lution before any approximation. We have used a fourth or-
der Runge-Kutta method, with a time step chosen to preserve
the Hamiltonian to an accuracy better than 1025 over a com-
plete numerical experiment. The parameters of the chain are
a51,m51,A51,B51, that is,u0

25g51. The lower gap fre-
quency corresponds tov0

25100, so that the conditionv0@u0
is satisfied.

The initial condition is a plane wave, whose amplitude is
slightly modulated,

un~ t50!52f0@110.01 cos~Kna!#cos~kna!. ~3.1!

Here, the amplitude parameterf0 of the absolute displace-
ment is straightforwardly related toc0 involved in ~2.12! by

c052f0 sin
ka

2
. ~3.2!

As a specific example, we consider a chain ofN56 oscil-
lators, with periodic boundary conditions, that is, the wave
numbersk and K are both 0,6p/3a, 62p/3a, or 1p/a,
while v is deduced from~2.6!.

For k56p/3a, no instability is detected for all the six
possible values ofK. For instance, Fig. 3~a! shows the time
evolution of the spatial Fourier componentsSp , whenk5K
5p/3a and c05f050.35. The carrier wave~p561! is
stable over about 800 periods, and the oscillations of the
sideband~p562! cannot be detected. Note that the last spa-
tial Fourier component~p53! remains negligible, as sup-
posed in the preceding section.

For k562p/3a, MI develops for wave numberK5p/
3a, when the amplitudec0 exceeds of 0.183~see Table I!.
We also obtain MI fork5p/a, andK5p/3a, with a thresh-
old value at 0.210. This agrees rather well with theoretical
predictions of Table I, in spite of the approximations made in
Sec. II. We have represented in Fig. 3~b! the spatial Fourier
componentsSp versus the time fork5p/a, K5p/3a, and
c050.26, that is,f050.13. The sidebandsk6K(p562)
quickly increase and become rather large with respect to the
carrier level~p53!. Note that the bandsk62K ~that is,p5
61!, not considered in the theoretical section, also increase
versus time, but seem to play a negligible role. All these
sidebands oscillate in time, and as time evolves~until 10 000
time units, not represented in this paper!, these oscillations
present a recurrence behavior. The averaged period of this
recurrence is about 80 time units.

For the previous numerical experiment@see Fig. 3~b!#, we
have also represented in Figs. 4~a! and 4~b!, for each particle,
the evolution versus time of its energy, defined from~2.1! by

Hn5
mv0

2

2
@un#

21
m

2 S dundt D 21 1

2
@V~un112un!

1V~un2un21!#, ~3.3!

where the potentialV(r n) is uniformly distributed between
particlesn and n11. Each energyHn starts at aboutH/6.
Due to MI and since the total energyH of the cyclic chain is
conserved, 60% of the energy is confined in the vibration of
the sixth particle att5120 units, 21% in the vibration of the

FIG. 2. MI regions numerically depicted vs
ak and aK, a being the lattice spacing,k the
carrier wave number, andK the perturbation
wave number. The MI amplitude threshold is rep-
resented vertically when it is smaller than 0.5~di-
mensionless units!. Otherwise, the carrier wave is
always modulationally stable.

TABLE I. Comparison between the theoretical predictions and
numerical results, concerning the MI occurrence for a plane wave
with amplitudec0 and wave numberk, slightly modulated at wave
numberK5p/3a, propagating in a chain with periodic boundary
conditions~N56!. As specified in the text,a5m5A5B5u 0

251,
while v0

25100.

Carrier wave number k56p/3a k562p/3a k51p/a
Theoretical predictions stable unstable

c0t50.144
unstable

c0t50.167
Numerical results stable

@see Fig. 3~a!#
unstable

c0t50.183
unstable

c0t50.210
@see Fig. 3~b!#
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first and fifth ones, while the three others have almost no
energy. Next, the energy is located only in particles 1 and 2
~at t5310 units!, and later, in particles 3 and 4~at t5390
units!, and so on. Att5460 units, the energy localizes again
in particle 6, that is, the chain presents a recurrence behavior.
Carrying on the numerical simulation for 10 000 time units,
we get an average value for the recurrence period of about
160 time units, twice the recurrence time observed for the
spatial Fourier sidebandsk6K. Thus each oscillator takes
alternatively most of the total energy every 160 time units,
i.e., every 260 carrier oscillations, while energy returns to a
uniform distribution twice during this time. This recurrence
time depends not only onk andK, but also on the difference
between the amplitude and the amplitude threshold, as sug-
gested by the theoretical study of Sec. II.

In conclusion, we have shown that the physics of a one-
dimensional lattice, with a specific coupling nonlinear poten-
tial, can be described, in the weak amplitude and slow time
limits, by a modified Ablowitz-Ladik equation. We have
next considered a lattice with periodic boundary conditions,
that corresponds to a cyclic system. The stability of the cw
modes has been investigated. Some of these modes, espe-

cially the modek5p/a where the particles oscillate out of
phase, are found to be unstable under small perturbation,
when the amplitude exceeds a certain threshold. The insta-
bilities are related to energy localization, that is, the energy
concentrates then periodically in the vibrations of each par-
ticle. This prediction is numerically checked for a simple
model of six particles, and the numerical amplitude thresh-
olds for MI agree rather well with the theoretical ones, in
spite of the approximations. For these amplitude values, the
considered potential is very close to the Morse potential,
which is often used in different physical domains. Our re-
sults suggest that the present analysis could be applied to
physical systems of coupled nonlinear oscillators, with a
rather small number of particles, and also to cyclic mol-
ecules, such as benzene C6H6 or silane SiH4, where some
signatures of energy localization in specific bonds have been
observed@26#. In such molecules, the substrate potential may
be considered, to a first approximation, as an interaction be-
tween the heavy part of the system and the hydrogen atoms,
while the nonlinear potentialV(r ) couples each hydrogen
atom with its neighbors.
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FIG. 3. Time evolution of the Fourier components~p561,62,
and 3!, with a logarithmic scale, for a wave with amplitude
c050.35 and wave numberk5p/3a slightly modulated with wave
numberK5p/3a, and propagating in a chain with periodic bound-
ary conditions ~N56!. As specified in the text,
a5m5A5B5u 0

251, while v0
25100. ~b! The same, but for

c050.26,k5p/a, andK5p/3a.

FIG. 4. Time evolution of the relative energy of particles 1–3,
showing spatial localization, the parameters being fixed as for Fig.
3~b!. ~b! The same for particles 4–6.
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